
Unicyclic components in random graphs

This article has been downloaded from IOPscience. Please scroll down to see the full text article.

2004 J. Phys. A: Math. Gen. 37 L189

(http://iopscience.iop.org/0305-4470/37/18/L01)

Download details:

IP Address: 171.66.16.90

The article was downloaded on 02/06/2010 at 17:57

Please note that terms and conditions apply.

View the table of contents for this issue, or go to the journal homepage for more

Home Search Collections Journals About Contact us My IOPscience

http://iopscience.iop.org/page/terms
http://iopscience.iop.org/0305-4470/37/18
http://iopscience.iop.org/0305-4470
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience


INSTITUTE OF PHYSICS PUBLISHING JOURNAL OF PHYSICS A: MATHEMATICAL AND GENERAL

J. Phys. A: Math. Gen. 37 (2004) L189–L195 PII: S0305-4470(04)78037-3

LETTER TO THE EDITOR

Unicyclic components in random graphs

E Ben-Naim1 and P L Krapivsky2

1 Theoretical Division and Center for Nonlinear Studies, Los Alamos National Laboratory,
Los Alamos, NM 87545, USA
2 Center for Polymer Studies and Department of Physics, Boston University, Boston,
MA 02215, USA

Received 18 March 2004
Published 20 April 2004
Online at stacks.iop.org/JPhysA/37/L189 (DOI: 10.1088/0305-4470/37/18/L01)

Abstract
The distribution of unicyclic components in a random graph is obtained
analytically. The number of unicyclic components of a given size approaches a
self-similar form in the vicinity of the gelation transition. At the gelation point,
this distribution decays algebraically, Uk � (4k)−1 for k � 1. As a result, the
total number of unicyclic components grows logarithmically with the system
size.

PACS numbers: 02.10.Ox, 64.60.−i, 02.50.−r

Random graphs underly processes such as polymerization [1], percolation [2] and the formation
of social networks [3, 4]. Random graphs have been extensively studied, especially in
theoretical computer science [5, 6]. Special families of random graphs have also been
examined, e.g., planar random graphs appear in combinatorics [7, 8] and in physics [9]. The
basic framework for generic random graphs naturally emerged in two different contexts [10].
Flory [1, 11] and Stockmayer [12] modelled a polymerization process in which monomers
polymerize via binary chemical reactions until a giant polymer network, namely a gel, emerges.
Erdös and Rényi studied an equivalent process in which connected components emerge from
ensembles of nodes that are linked sequentially and randomly in pairs [13].

Different methodologies have been employed to characterize random graphs. Kinetic
theory, specifically, the rate equation approach, was used to obtain the size distribution of
components [14]. Using probability theory, a number of additional characteristics including
in particular the complexity of random graphs have been addressed [5, 6].

In this study, we show that the rate equation approach is useful for studying the complexity
of random graphs. Our main result asserts that Uk , the average number of unicyclic components
of size k in a random evolving graph, is given by

Uk(t) = 1

2
t k e−kt

k−1∑
n=0

kn−1

n!
. (1)

The unicyclic components size distribution becomes self-similar as the gelation transition
is approached. At the gelation point (tg = 1), the size distribution develops an algebraic
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Figure 1. A random graph with N = 10 nodes and eight links. The two components on the left
are trees, the two components on the right are unicyclic.

large-size tail: Uk(1) � (4k)−1. This implies that at the gelation point, the total number of
unicyclic components depends logarithmically on the system size.

The random graph evolves from N disconnected nodes as follows. At each step, two nodes
are selected at random and a link is drawn between them. This linking process is repeated
ad infinitum, leading to an ensemble of components, defined as maximally connected sets of
nodes. We consider multi-graphs where the two selected nodes need not be different so that
self-connections are allowed.

Each component has a certain number of nodes and links. The number of nodes is the
component size. The number of links minus the number of nodes is the component complexity
[15]. Up to a sign, the complexity is the Euler characteristic of the component—a topological
invariant. Trees have complexity −1, unicyclic components have complexity 0, bi-cyclic
components have complexity 1, etc (figure 1).

This linking process is treated dynamically. Initially, there are N components of size
1 and complexity −1. Links are drawn between any two nodes with a uniform rate, set
equal to 1/(2N) without loss of generality. It is useful to consider linking between different
components and linking within the same component separately. Two different components of
size and complexity (i, l) and (j,m), respectively merge with the rate ij/(2N), symbolically
represented by the reaction scheme

(i, l) + (j,m) → (i + j, l + m + 1). (2)

When linking involves two nodes in the same (k, n) component, the process is

(k, n) → (k, n + 1) (3)

and it occurs with the rate k2/(2N). The average number of links at time t is Nt/2; the average
number of self-links is smaller by a factor N, i.e. it is equal to t/2.

Let the number of components of size k and complexity n be Nk,n. Following the
dynamical rules (2), (3), the quantities Nk,n change with time according to the bi-variate
Smoluchowsky equation [16, 17]

dNk,n

dt
= 1

2N
k2(Nk,n−1 − Nk,n) +

1

2N

∑
i+j=k

∑
l+m=n−1

ijNi,lNj,m − kNk,n. (4)

The initial condition is Nk,n = Nδk,0δn,−1. This rate equation implies that the number of
trees, unicyclic components and bi-cyclic components are proportional to N,N0 and N−1,
respectively. The random graph consists primarily of trees and unicyclic components, with
more complex components being rare. Our goal is to derive the distribution of unicyclic
components. Given the recursive nature of the rate equations, it requires the size distribution
of trees, that to leading order in N equals the total size distribution.
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We first recapitulate the computation of the total size distribution. Let ck = Nk/N

be the size distribution of all components (formally, Nk = ∑
l Nk,l). Since linking within

a component affects its complexity but does not affect its size, the corresponding (first two)
terms in the rate equation (4) are irrelevant and the total size distribution satisfies the nonlinear
equation

dck

dt
= 1

2

∑
i+j=k

ijcicj − kck. (5)

The initial condition is ck(0) = δk,1. The size distribution is obtained via the generating
function

F(z, t) =
∑
k�1

kck(t) ekz. (6)

This generating function evolves according to

∂F

∂t
= (F − 1)

∂F

∂z
(7)

subject to the initial condition F(z, 0) = ez. Let us re-write the derivatives through Jacobians:
∂F
∂t

= ∂(F,z)

∂(t,z)
and ∂F

∂z
= ∂(F,t)

∂(z,t)
. Using the relation ∂z

∂t
= ∂(z,F )

∂(t,F )
, we recast the nonlinear

equation (7) for F(z, t) into a linear equation ∂z
∂t

= 1 − F for z(F, t). Integration over
time yields z(F, t) = (1 − F)t + ln F (the integration constant ln F follows from the initial
condition F(z, 0) = ez). Exponentiating this equality yields an implicit relation satisfied by
the generating function

F e−tF = e−t ζ ζ = ez. (8)

We can expand ζ in terms of F, yet we are seeking the opposite: F = ∑
kck(t)ζ

k . The size
distribution can be obtained either using the Lagrange inversion formula [18] or alternatively,
by performing the direct calculation

kck = 1

2π i

∮
dζ

F

ζ k+1

= 1

2π i

∮
dF

ζ ′(F )F

[ζ(F )]k+1

= 1

2π i

∮
dF

(1 − tF ) ektF

F k ekt

= e−kt

[
(kt)k−1

(k − 1)!
− t

(kt)k−2

(k − 2)!

]
.

The size distribution is therefore [14, 19]

ck(t) = (kt)k−1

k · k!
e−kt . (9)

At time tg = 1, the system undergoes a gelation transition: a giant component that
eventually engulfs the entire mass in the system emerges. Close to the gelation time, the size
distribution attains the scaling behaviour ck(t) � k

−5/2
∗ �(k/k∗) with the typical size scale

k∗ = (1 − t)−2. This size scale diverges as the gelation point is approached. The underlying
scaling function �(z) = (2π)−1/2z−5/2 e−z/2 exhibits an exponential large-size decay in the
pre-gel regime while at the gelation time it develops an algebraic tail: ck ∼ k−5/2. This power-
law behaviour allows us to estimate the size of the giant component, Ng ∼ N2/3 [5], using
the extremal statistics criterion N

∑
k�Ng

ck ∼ 1 [20]. The time when the giant component

emerges in a finite system is estimated from Ng ∼ (1 − tg)
−2, i.e., 1 − tg ∼ N−1/3.
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Figure 2. The average number of unicyclic components at the gelation point versus the system
size N.

The average size distribution of unicyclic components Uk ≡ 〈Nk,0〉 is coupled to the total
size distribution ck . From (4) we find that Uk satisfies the linear inhomogeneous equation

dUk

dt
= 1

2
k2ck +

∑
i+j=k

iUijcj − kUk. (10)

The initial condition is Uk(0) = 0. The first term on the right-hand side of (10) plays the role
of a source—it represents the formation of unicyclic components from trees via the linking of
two nodes within the same component. Such linking occurs with the rate k2/2N (recall that
multigraphs where two nodes can be connected by more than one link are considered). The
next two terms account for changes in the size of a unicyclic component due to mergers with
different components.

Consider the average number of unicyclic components U = ∑
k Uk prior to the gelation

time. Summing equations (10) we find that U satisfies

dU

dt
= 1

2
M2 (11)

where M2(t) = ∑
k k2ck(t) is the second moment of the size distribution. Using M2(t) =

F ′(z, t)|z=0 and equation (8) we obtain M2 = (1 − t)−1. The total number of unicyclic
components is therefore

U(t) = 1

2
ln

1

1 − t
. (12)

The number of unicyclic components diverges as the gelation point is approached. The
total number of unicyclic components at the gelation point is obtained from the estimate
1 − tg ∼ N−1/3; it diverges logarithmically with the system size N [21, 22]

U(tg) � 1
6 ln N. (13)

This number is much larger compared with the average number of self-connections that equals
1/2 at the gelation point. The approach to the asymptotic behaviour (13) is shown using Monte
Carlo simulations (figure 2). The data represent an average over 106 independent realizations.

To determine the entire distribution Uk , it is useful to manually solve for small k. The
expressions

U1 = 1
2 t e−t U2 = 3

4 t2 e−2t U3 = 17
12 t3 e−3t
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suggest the following structure kUk(t) = Akt
k e−kt . Substituting this form and the size

distribution (9) into (10) we obtain a recurrence for the coefficients

Ak = 1

2

kk

k!
+

∑
i+j=k

Ai

j j−1

j !
. (14)

To solve this recursion, we introduce the generating functions A(z) = ∑
k�1 Ak ekz and

H(z) = ∑
k�1

kk−1

k! ekz, thereby recasting (14) into

A = 1

2
(1 − H)−1 dH

dz
. (15)

The generating function H(z) = F(z + 1, 1) is expressed via the known generating function
F(z, t) and therefore,

H e−H = ζ ζ = ez. (16)

Re-writing this equality as ln H − H = z and differentiating with respect to z we obtain
dH
dz

= H/(1 − H), which is then inserted into (15) to give A = 1
2H(1 − H)−2. Combining

this equation together with equation (16), the coefficients are evaluated similar to the derivation
of the size distribution ck:

Ak = 1

2π i

∮
dζ

A

ζ k+1

= 1

2π i

∮
dH

ζ ′(H)A

[ζ(H)]k+1

= 1

2π i

∮
dH

ekH

Hk

1

2(1 − H)

= 1

2

k−1∑
n=0

kn

n!
.

Thus, the size distribution of the unicyclic components (1) is obtained analytically.
Given the scaling behaviour of the size distribution, we investigate the unicyclic size

distribution in the vicinity of the gelation point. To obtain the large-k behaviour, the size
distribution is re-written as

Uk(t) = 1

2
t k e−kt kk−2

(k − 1)!

k−1∑
j=0

j∏
i=0

(
1 − i

k

)
. (17)

When k � 1, the product approaches an exponential, e−j (j+1)/2k , and the summation can be
replaced by integration

k−1∑
j=0

j∏
i=0

(
1 − i

k

)
�

∫ k

0
dj exp

[
−j (j + 1)

2k

]
�

∫ ∞

0
dj exp

[
− j 2

2k

]
=

√
πk/2.

The leading large-k asymptotics of the unicyclic components size distribution is therefore

Uk(t) �
√

π

8k

(kt)k

k!
e−kt . (18)

In the vicinity of the gelation point, this distribution approaches the scaling form Uk(t) �
k−1
∗ �(k/k∗) with the same scaling variable as that underlying the total size distribution,

k∗ = (1 − t)−2. The scaling function is also similar in form

�(z) = (4z)−1 e−z/2. (19)
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The unicyclic size distribution has exponential tails both above and below the gelation transition
and it becomes algebraic at the gelation point

Uk(tg) � (4k)−1 when k � 1. (20)

This result is of course consistent with the total number of unicyclic components: U(tg) �∑
k�N2/3 Uk(tg) leads to equation (13).

We now probe the complexity of the giant component. In the post-gelation region the
gel mass (mass not contained in finite components) g(t) is given by g = 1 − ∑

k kck(t) =
1 − F(z, t)|z=0. Using equation (8), the gel mass obeys g = 1 − e−gt for t > 1. The
complexity of the giant component increases due to linking processes involving its internal
nodes. The total number of nodes in the giant component is Ng. The linking rate is therefore
(2N)−1 × (Ng)2, so the complexity of the giant component is

C(t) = N

2

∫ t

1
dt ′g2(t ′). (21)

Just above the gelation transition, the gel mass increases linearly, g � 2(t − 1), and therefore,
C(t) � 2

3N(t − 1)3 as t ↓ 1. In the large time limit there are a few monomers apart from
the giant component. The total number of links is Nt/2 and the total number of nodes
is N − N1 = N(1 − c1), so the complexity of the giant component grows according to
N(t/2 − 1 + e−t ) when t → ∞. This result also follows from the general formula (21) and
the asymptotic behaviour of the gel mass g(t).

In this study, we considered size and complexity characteristics obtained via an average
over infinitely many realizations of the linking process. For some quantities, averaging is
irrelevant in the thermodynamic limit N → ∞. For instance, the tree distribution is an
extensive random quantity (〈Nk,−1〉 = Nck) with fluctuations of the order of N1/2 [23, 24],
so relative fluctuations decrease with the systems size according to N−1/2. Thus, for trees the
average distribution Nck well represents the outcome of a single realization of the random
evolving graph. For unicyclic components, fluctuations are of the same order as the average
and an analytical computation of the correlation function 〈Ni,0(t)Nj,0(t)〉 is a challenging open
problem. This correlation function is required for the determination of the average distribution
of bi-cyclic components, so the naive form of the rate equation (4) is inadequate for describing
bi-cyclic (and more complex) components.

In conclusion, we have obtained the size distribution of unicyclic components in a
random graph. Overall, the unicyclic size distribution has similar properties as the total
size distribution; it becomes self-similar near the gelation point, and generally, it has an
exponential tail. Precisely at the gelation point the distribution has an algebraic tail. The main
difference with the size distribution is in the value of the power-law exponent itself.
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[13] Erdös P and Rényi A 1960 Publ. Math. Inst. Hung. Acad. Sci. 5 17
[14] McLeod J B 1962 Q. J. Math. Oxford 13 119

McLeod J B 1962 Q. J. Math. Oxford 13 193
McLeod J B 1962 Q. J. Math. Oxford 13 283

[15] Janson S 2000 Rand. Struct. Algorithms 17 343
[16] Smoluchowski M V 1916 Physik. Z. 17 585

Smoluchowski M V 1917 Z. Phys. Chem. 92 129
[17] Krapivsky P L and Ben-Naim E 1996 Phys. Rev. E 53 291
[18] Wilf H S 1990 Generatingfunctionology (Boston: Academic)
[19] Hendriks E M, Ernst M H and Ziff R M 1983 J. Stat. Phys. 31 519
[20] Ben-Naim E and Krapivsky P L 2004 Europhys. Lett. 65 151
[21] Janson S, Knuth D E, Łuczak T and Pittel B 1993 Rand. Struct. Algorithms 3 233
[22] Janson S 2003 Comb. Probab. Comput. 12 27
[23] Lushnikov A A 1977 J. Colloid. Inter. Sci. 65 276
[24] van Dongen P G J and Ernst M H 1987 J. Stat. Phys. 49 879


